328554(28)

B. E. (Fifth Semester) Examination, April-May/ Nov.-Dec. 2020

(New Scheme)

(Et & T Branch)

DIGITAL COMMUNICATION

The second birth second line second lines

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) is compulsory from each question. Attempt any two parts of part (b), (c) and (d) of each question.

Lugaritis ax many man Unit-I

- 1. (a) Define Companding.
- 2
- (b) State and proof sampling theorem for band pass signal.

var never elemnización la upareción de la compression de

$$f(v) = \begin{cases} Ke^{-|v|} & -4 < v < 4 \\ 0 & \text{elsewhere} \end{cases}$$

- (i) Find K. Standard Standard Hills
- (ii) Determine the step size if there are four quantization level.
- (iii) Calculate the variance of quantization error when there are four quantization level.
- (d) A Bandpass signal has center frequency f_o and extends from $f_o 5$ kHz to $f_o + 5$ kHz. The signal is sampled at the rate $f_s = 25$ kHz if the center frequency f_o varies from $f_o = 5$ kHz to 50 kHz. Find the range of f_o for which sampling rate is adequate. 7

Unit-II

2

7

- 2. (a) Define PCM.
 - (b) A PCM system uses a uniform quantizer followed by a ν bit encoder. Show that the rms signal to quantization noise ratio is approximately given by $(1.8 + 6 \nu)$ dB. Assume that input to the PCM is sinusoidal signal.

(c) What are the limitation of Delta Modulation? Also explain ADM.

- (d) A delta modulation system is designed to operate at 4 times the nyquist rate for a signal with a 5 kHz bandwidth. The quantizing step size is 250 mV.
 - (i) Determine the maximum amplitide of a 1 kHz input sinusoidal for which delta modulation does not show slope overload.
 - (ii) Determine output signal to quantizing noise ratio for the signal of part (i).

Unit-III

- 3. (a) Define NRZ and RZ line code
 - (b) Write short notes on
 - (i) Eye pattern
 - (ii) Scrambling
 - (c) What is Bipolar Signalling? Draw the PSD for Bipolar signalling.
 - (d) Explain regenerative repeaters. Also explain zero forcing equalizer.

PTO

7

[4]

The Company of the Unit-IV come as the serve to

4.	(a)	Define Digital Signal.	2
	(b)	With the aid of block diagram explain generation & detection of BPSK.	7
	(c)	What is DPSK? Explain DPSK with suitable block diagram.	7
	(d)	(i) The data $b(t)$ consist of the bit stream 001010011010. Assume that the bit rate f_b is equal to the carrier frequency f_o and sketch	
		$V_{BASK}(t)$.	3
		(ii) Differentaite Offset QPSK and non offset QPSK.	4
		Unit-V	
5.	(a)	What is Optimum Filter?	2
	mil	Derive expression for probability of error for BPSK. Derive expression for impulse response of matched	7
	(0)	filter.	7
		Derive expression for probability of error for optimum filter.	7
		•	